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1. Introduction

Friedrich[6] proved, that if the scalar curvature of a compact spin manifold is bounded
from below by a positive constarg, then any eigenvaluk of the Dirac operator satisfies
n
B

This inequality was improved in case of restricted holonomy,[@1=13] Another lower
estimate for Dirac eigenvalues was proven by Hif@kithe square of any eigenvalue of the
Dirac operator is bounded below by the first eigenvalue of the Yamabe operator (conformal
Laplacian).

However, for the two-dimensional torus, all these lower bounds are trivial. The two-
dimensional torus carries four different spin structures. In general, the spectrum of the
Dirac operator will depend on the choice of spin structure. For one of the spin structures,
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the so-calledrivial spin structure, zero is in the spectrum, for the other spin structures, it
is not.

In the present article we will derive an estimate depending on the spin structure, in order
to control the size of the gap in the spectrum around zero.

Let us fix a Riemannian metric and a non-trivial spin structurdén

Thesystoleis defined to be the shortest length of a non-contractible loop. Similarly, the
spin-systolespin-sys is the shortest length of a closed curve along which the spin structure
is non-trivial.

We will show (Corollary 2.3 that any eigenvalue of the Dirac operator on the torus
satisfies

72

spin-sy$’

whereC > 0 is an explicitly given expression in the area, the systole and.theorm of
the Gaussian curvaturg,e (1, 00).

The estimate of this paper is an extension of resul{8jnThis estimate was the first
estimate for Dirac eigenvalues that depends on the spin structure and that holds on manifolds
without any symmetry assumptions.

Another estimate for the Dirac eigenvalues on compact oriented surfaces of arbitrary
genus has been proven|it]. This bound depends on different data and uses completely
different techniques.

Under suitable curvature conditions the results of the present article yield better estimates
for Dirac eigenvalues thdt]. This type of estimate is useful for applications to the Willmore
functional[2—4].

A2>cC

2. Main results

Fix a Riemannian metrig and a spin structurg on the two-dimensional torug?.
Recall that the.?-norm ofa € HY(T?, R) is ||a||%2 :=inf [ |w|3dvol,, where the infimum
runs over all smooth one-formasrepresenting. Note that the.2-norm is invariant under
conformal rescaling.

The integer cohomology class&8 (T2, Z) are viewed as a lattice i (72, R) = R2.

We equip
1,2 o~ Q2HNT? Z)
1% 22) = =102 7

with the quotient norm, i.e. fof € H1(T2, Z,) we set

”ﬂ”Lz = inf ”a”Lz»

wherea € (1/2) HY(T?, Z) runs over all representatives pf

By identifying the trivial spin structure ofi? with 0 € HY(T?, Zy) the set of all spin
structures is identified withf (72, Z,). Hencel| x| ., is a well-defined invariant of the spin
structurey and of the conformal type.
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Let
T?, g) = inf HYT?,Z 0
01(T?, g) = inf{|lall,le € HY(T?, Zp), & # O},

be thecosystole
For the formulation of our statement the following definition is required.

Definition 2.1. For anyp > 1, letS, be the function given by the expression

, p [K 1 K K 2K Ky
=— =+ =l 1- — — — —_—
Spk. K. W) p—1|:47'r+2 °g< 4n>‘+8n—21C 9UNx)|"s
for K € (0, 4n), K’ € [K, 00) andV € [0, co). We extend continuously by setting
, P K’
Sp(0, K, V) = S ian

In this paper we will prove the following theorem.

Theorem 2.2. Let (T2, g) be a Riemannian two-torus with a non-trivial spin structyre
Assume than’(:g”l‘l(TZ’g) < 4. Then any eigenvalue of D satisfies

AlaredT?, g)
N a2 2,
~exp2S,(1Kgll 172, gy ||Kg||Lp(T2,g)are€(T27 QY WP 01(T?,8)72)’

where S, is the function defined iDefinition 2.1 Equality is attained for the smallest
positive eigenvalue if and only if g is flat

From this theorem we will derive a corollary estimatingin terms of the systole sys
and thespin-systolespin-sys

sysl(Tz,g) = inf{length(y) | ¥ isanon-contractible loop
spin-syg(Tz, g x) = inf{length(y) | y isaloopwittyx(y]) = —1.}.

Corollary 2.3. Let(7T?2, g) be a Riemannian two-torus with a non-trivial spin structyre
Assume that K¢l 1172 o) < 4. Then any eigenvalue of D satisfies

A2spin-sys (T2, g, x)?

72

>

- 2 ,)1-(1/p) aredT?g) \\’
exp (45 (11K glarz,g0s I1Kelloir2, o areaT?, @)1=/, 2, ))

Equality is attained for the smallest positive eigenvalue if and only if

(@) gis flat i.e. (T2, g) is isometric taR2/I" for a suitable latticel”, and
(b) there are generatorg, y2 of I' satisfyingy1 L y2, x(y1) = Land x(32) = —1.
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Remark. Using similar techniques it is possible to obtain similar upper and lower bounds
for the first and for all higher eigenvalues, both for the trivial and non-trivial spin structures
[2,3].

Proof of thetheorem. Because of the uniformization theorem we can writsg = e? gg
with a real-valued function and a flat metrigg. This functioru solves the Kazdan—Warner
equation
Agu = € 2 Agou = K.
A large part of this paper is devoted to the proof of a Sobolev type inequality, which yields
an upper bound for the oscillation asc= maxu — minu (Section §. We obtain
oscu < Sp(I1Kgll L1r2.4). 1Kl Lo(r2.garedT?, )t~ P) oy(T2, g)72). 1)
This estimate is optimal if and only if is flat.
For flat tori the spectrum of the Dirac operator is known: it can be calculated in terms of

the dual lattice corresponding t®2, go) (we recall this inSection §. As a consequence of
this, any eigenvalug of the Dirac operator on the flat torgg2, go, x) satisfies

)3aredr?, go) = 4n?||x|12. (2)
Obviously we have
areaT?, g) > €™M areaT?, go). C)

Proposition 3.Jhow provides the remaining step. There we show that for any Dirac eigen-
valuex on (T2, g, x) there is a Dirac eigenvalug on (T2, go, x), such that
XZ > e—ZmaXM)\%. (4)

Combining(1)—(4)we obtain the theorem. O

Proof of thecorollary. In Section 4we prove the inequalities
sys(T2, ) _ sys(T? go)?
aredT2,g) ~ areaT?, go)
2osa SPN-SY$(T? g, 02 spin-sys(T?, g0, 0> 1 1

areal?,g)  ~ aredl?g0) " Alxllage,,  Hxlage,

= 01(T?, g0)% = 01(T?, )%,

Together with the monotonicity &, in the last argument we obtain the corollary. [

3. Comparing spectra of conformal manifolds

In this section we will compare Dirac eigenvalues on spin-conformal manifolds.

Proposition 3.1. Let M be a compact manifold with two conformal metg@ndg = ez,
Let D andD be the corresponding Dirac operators with respect to the same spin structure.
We denote the eigenvaluesif by 12 < 23 < - .- and the ones ab? byi2 < i3 < ...
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Then

A2 min e < 52 < A2 max e, Vi=12 ...
meM meM

Proof. Letn := dimM. We have dvg] = €"dvol;. There is an isomorphism of vector
bundleq5], [10, Satz 3.14br[9, 4.3.1]

M — M, s 0,
over the identity idM — M satisfying

DW) =€'D¥ and |¥|=e®D/uy| (5)
Let (¥;li = 1,2,...) be an orthonormal basis of the sections3f/ with ¥; being an
eigenspinor ofD? to the eigenvalueui2 with respect to the flat metrig. The vector space

spanned by, W will be denoted byU;.
We can bounai2 by the Rayleigh quotient

- DY, D¥);
)\.12 < max Q

FeUi—{0y (¥, ¥);
Plugging(5) into this expression we concludé < Al.z max,cpe?. The other inequality
can be proven in a completely analogous way. O
4. Loewner’sinequality

Proposition 4.1. Let g be any Riemannian metric dif and let x be a non-trivial spin
structure. There is a flat metrigy which is conformal to g

sys(T? 9)? _ sys(T? go)®

a Loewner's inequality),
(@) aredT?,g) — aredT?, go) ( sinequality
sys (T2, go)? 2 2 2 \2
b 5 . = T ) = T ’ ’
(b) ared . go) 01(T%, go)* = 01(T%, &)
© spin-sys(72, go. X)? _ 1 _ 1
aredT? g0)  ~ Alxllage,,  AlXIZage.,

We have equality in the inequalities (@ if and only if g is flat

For the characterization of the equality casg@we choose a latticé together with an
isometryl : R2/I" — (T?, go). Then equality ir(c) is equivalent to the fact that there are
generatorsys, y» for the latticerl” satisfyingy1 L y», x(I o y1) = land x({ o y2) = —1.

Proof. We follow [8, 4.1]. Let g = €?go. We start with a non-contractible loapwhich

is shortest with respect tgg. There is an isometric torus action o2, go) acting by
translations. Translation bye 72 will be denoted byL . Then

dx length, (L,
fT , , drlength (L)

—sys(% g [ dre'™ < sys (12 gojarear? go)tarear?, o).
T<,80
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Because the left hand side is an upper bound fof(§Y¥s g)aredT?, go), inequality (a)
follows.

The discussion of the equality case in (a) is straightforward; (b) and (c) follow directly
from elementary calculations. As already stated previouslyL.taeorm is invariant under
conformal changes. O

In Corollary 2.3we also use the following lemma. The proof of it is straightforward.

Lemma4.2.

(2osau SPN-SY$(T2, g, )? _ spin-sys (T2, go, 0°
aregT2, g) - aredT2, go)

5. Spectraof flat two-tori

In this section we recall the well-known formula for the spectrum of the Dirac operator
on flat two-tori. We restrict to the case tHed carries a non-trivial spin structure.

Definition 5.1. Thespin-conformal moduli spac&15P"is the set of allx, y) € R? satis-
fying

O<x=<3 -DH%+y2=L1  y>o (6)

For any(x, y) € MSP"we obtain a flat two-torus carrying a non-trivial spin structure as
follows:

R? 1 X
T2 = — Ty = .
Iy’ Y span{(o),(y>}

The spin structurg € H(T2, Z) is characterized by

() )

Conversely any flat torus with a non-trivial spin structure can be rescaled to a torus obtained
from MP". The dual latticery, := H(T? Z) = Homy (I, Z) is generated by the
vectors

1
ex:=| _* and e =
y

11w
=|=e —
X=12% T

< Ik O



378 B. Ammann/Journal of Geometry and Physics 51 (2004) 372-386

Proposition 5.2. ([7]). Assume thaf? carries a non-trivial spin structure. Then with the
above notations the spectrum of the square of the Dirac opeiafasn 772 is given by

472y 12,
area

where for eacly € I, + (e2/2) we obtain an eigenspace of dimension 2

Proof. Let (1, ¥2) be a basis of parallel sections of the spinor bundi®émnd assume
that they are pointwise orthogonal. Then

Wy = expRmi(y. X)) ¥j. v € Iiy+ 3e2

is a spinor field that is invariant under the action/gf. Thus, it defines an eigenspinor
for D? : ¥T? — XT? with eigenvalue #2|y|? and the family(¥;,|j = 1,2,y €
Iy, + (e2/2)) is a complete system of eigenspinors. O

We want to prove thafy + (e2/2) contains no vector that is shorter than2. For this
we need a lemma.

Lemma5.3. If linearly independent vectons;, v, € R? satisfy
0 < (v1,v2) < [v1l® < Jv2l?,

then for any integers a, b witth# 0 andb # 0 the following inequality holds
lavy + buz| > |v2 — v1].

If |avy + bvz| = |v2 — v1], thenja| = |b] = 1.

Proof. Let|avy + bvo| < |v2 — v1]|. Without loss of generality we can assume thanhdb
are relatively prime.
We obtain

a?v1|? — 2[ab] - (v1, v2) + b?|v2l? < |v1|? — 2(v1, v2) + |v2l?,
and therefore

(@® 4 b2 = 2)|v1|? < (@® — D|v1|2 + B — D|vaf?
<2(jabl — 1)(v1, v2) < 2(|abl — 1)|v1|2.

Thus(|a| — |b])2 < 0 holds, i.eja| = ||, and as we assumed thaandb are relatively
prime we obtairja| = |b| = 1. Because ofv1 + v2| > |v2 — v1] the lemma holds. O

Corollary 5.4. If (x, y) € MSP" then

(a) There is no vector irf);*y + (e2/2) that is shorter thare,/2.
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(b) The shortest vectors i, — {0} have length

. {1 ,/x2+y2}
min{=, Y= 1.
y

y

Proof.

(a) Because of relation®) the vectorsvy := e1/2 andvy = (e1 + e2)/2 satisfy the
conditions of the lemma. Any elemenptof F;y + (e2/2) can be written aswi +
bvy, a, b € Z — {0}. The lemma yields

1
lyl > vz — vi| = 5le2].

(b) Thistimewe set; = e; andvs = eq+eo. Asbefore 0< (v1, v2) < |v1]? < |v2|%. Any
y € I, — {0} is either amultiple oby or vz (then|y|? > |v1|? = |e1]? = 1+ (x?/)?))
or

1
lyl = vz —v1] = —. O
y
Using area= y we see that the smallest positive eigenvalyef D satisfies

2 2 2,112
Afarea= ? = 47| xlI72-

Also note for the cosystole

(1 X%+ y?
af:mm{—,x +Y }
y y

6. Controlling the conformal scaling function

Let T2 carry an arbitrary metrig. According to the uniformization theorem we can write
g = e® g with a real functiorns : 72 — R and a flat metrigo. The functionu is unique
up to adding a constant.
The aim of this section is to estimate the quantitymse maxu — minu. This estimate
will be a Sobolev type estimate. However, as we are interested in an explicit bound, we will
use elementary methods for the proof.
Theorem 6.1. We assume
||Kg||L1(T2,g) < 4.
Then for anyp > 1 we obtain a bound for the oscillation of u
oscu < Sp(IKgllzi(r2, s 1Kgll 72, (@rATZ, @) YP, 01(T2, 9)72),

whereS is the function defined iDefinition 2.1 Equality is obtained if and only if g is flat
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=L 7 A

Fig. 1. Metrics With||Kgi||L1(T2,gl) < K1 and osarg; — oo.

Corollary 6.2. Let F be a family of Riemannian metrics conformal to the flat meggic
Assume that there are constaiis <]0, 4x[ and C), €]0, oo[, p €]1, oo[ with

IKgll a2 < K1 and [|KgllLo(r2, g (@redT?, )~ ” < K, foranyg € F.

Then the oscillatiomscu , of the scaling function corresponding to g is uniformly bounded
on F by

osCuy < S(K1, Kp, p. V(T2 g0)).

Before proving the theorem we will present some examples showing that the theorem
and the corollary no longer hold if we drop one of the assumptidag| ;172 ,) < K1 <

47 o1 || Kyl Lo (72, (areaT?, g))=/n < IC,,.

Example. For anyX; > O there is a sequencg;) of Riemannian metrics with fixed
conformal type, bounded volume, constant systole, with

”Kgi”Ll(Tz,gl-) < Kiand 0SQty — OO.

In order to construct such a sequence we take a flat torus and replace a ball by a rotationally
symmetric surface which approximates a cone fex oo (Fig. 1).

Example. For anye > 0 there is a sequencg;)] of Riemannian metrics with fixed
conformal type, bounded volume, constant systelé, < K, < 1, IKgillL1(r2,gy <
4 + &, 1Kg; | o(12,4,) < CONSE and osg,, — oo. In order to construct such a sequence
we take a ball out of a flat torus and replace it by a hyperbolic part, a cone of small opening
angle, and a cap as indicatedrig. 2 While the injectivity radius of the hyperbolic part
shrinks to zero, the oscillation aftends to infinity.

In Fig. 2the dots in the “limit space” indicate the hyperbolic part with injectivity radius

tending to 0 and diameter tendingdo.

Proof of Theorem 6.1. As Morse functions form a dense subset of the spac&tfunctions
with respect to th€>°-topology, we can assume without loss of generality #tiata Morse
function. We set Area:= aredT?, g) and Area := aredT?, go). We define

G.(v):={xe T2 | u(x) <v}, G-():={xe T2 | u(x) > v},

¢ : [0, Areg,] — R,
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<> LS S

Fig. 2. Metrics withoutCy < 4 and 0satg; — oo.

A inf{supu(x)|X C T? open areaX) > A}, 7)
xeX
= supl inf u(x)|X° C T2 open ared X°) > Area, — A}. (8)
xeX¢

The infimum in(7) is actually a minimum and, asis a Morse function, the only minimum
is attained exactly foX“ = G - (¢(A)). Similarly the supremum i8) is attained exactly

in X = G- (¢(A)). The functiony is strictly increasing and is continuously differentiable
(Fig. 3). The inverse ofy is given by

¢ 1 (v) = aredG - (u)).

The differentialy’(A) is zero if and only ifp(A) is a critical value ofx.
Now letv € [minu, maxu] be a regular value af. We obtain

2
(@_1)/(1)) :/ 1 > length(oG - (v), g)
0G -(v),¢ |dulg J36 ). 101l

: )

max u

Vi

min u

A A, Ay Area, =
area(T?,g)

Fig. 3. The functionp.



382 B. Ammann/Journal of Geometry and Physics 51 (2004) 372-386

where lengthdG - (v), g) is the length of the boundary éf5 - (v) with respect tq. This

inequality will yield an upper bound fap’ which will provide in turn an upper bound for

oscu = @(Areay) — ¢(0) = : 1% ¢'. We transform

/ |du|g:/ *du:—/ Agu:—/ K,. (10)
0G<(v),g G < (v) G<(v).g G<(v).g

The last equation follows from the Kazdan—-Warner equatign = K, [14]. We definec
using the Gaussian curvature functig : 72 — R

k1[0, Areg,] - R, «(A) :=inf {sung(x)|X c T? open aregX) > A}.
xeX

Any open subsek c T2 satisfies

aredX,g) Area,
/ Kk < / K, < / K
0 X,g Area,—ared X,g)

and forX = T2 we have equality. Using Gauss—Bonnet theorem we seq(fﬁeaaf k=0.
The right hand side dEq. (10)now can be estimated as follows:

A Area,
_/ Kgf—/ K:/ K. (11)
G<(p(A)).g 0 A

Putting(9)—(11)together, we obtain

Area,
I P N —
~ length9G - (¢(A)), )?
Our next goal is to find suitable lower bounds for len@i- (¢(A)).

Note that for any regular valueof u, we can apply the following lemma féf; = G - (v)
andXo = G (v). O

Lemma6.3. Let(X1, X») be two disjoint open subsets®f such that they have a common
smooth boundargX1 = 9X». Then exactly one of the following conditions is satisfied

() TheinclusionX; — T2 induces the trivial mapr1(X1) — 71(T2).
(i) The inclusionXs> — T2 induces the trivial mapry(X2) — 71(T2).
(i) The boundaryX has at least two components that are non-contractibl&an

Before proving the lemma we continue with the proof of Theorem 6.1.
If condition (i) is satisfied by, itis obvious thatitis also satisfied by < [0, v]. Similarly,
if condition (ii) is satisfied by, then it is also satisfied by € [v, Area,]
v_ = supv € [0, Area,]|(i)is satisfied fon},
vy = inf{v € [0, Area,]|(ii)is satisfied fon}, As = (vy).

In each of the three cases we derive a different estimate for |&@th(v), ¢) and therefore
we obtain a different bound far'.
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(i) Inthis caseG - (v) can be lifted to the universal coverifitf of 72. We will also write
g andgg for the pullbacks o andgo to R?. The isoperimetric inequality of the flat
spaceR?, go) yields

length(9G - (v), go)? > 4m aredG - (v), o).

Using the relations

length(dG - (v), g) = €’length(dG - (v), go), (12)

aredG(v), g) < e aredG - (v), go). (13)
we obtain

length9G - (v), g)? > 4w aredG - (v), g). (14)

Together with the Holder inequality fOA K < | Kgllp(rz, AT P) we get

A
—Jo ¥

1
' = -1/p
v (A) = < < —|Kgllpo(r2. AP
(@ (p(A) ~ lengthdG - (p(A)), )2 ~ 4r ' SHH7I58)
Integration yields
v- = i = o 00) — 0(0) = — L Kl ()
~—p—14x""¢ (T4.8)
< Lk 1o (72, g (Areag) = /P, (15)
~p—14n 8 (T%,8)

(i) This case is similar to the previous one, but unfortunately because of opposite signs
some estimates do not work as before. For exan{p®,and (14)are no longer true
for G - (v) replaced byG- (v). Instead we use Topping’s inequal[ty5,16]

A
(length(dG - (v), 8))% > 4 A — 2 / (A — a)k(Area, — a) da (16)
0
with A = aredG-. (v), ). Using the estimate

A A P
n N A
/ (A—a)k(Area, —a)da < A/ max{0, kArea, — a)} da < E||Kg||L1(T2,g),
0 0

we obtain
(length3G-. (v), £))? > (4r — IIKgIILl(Tz,g))A- (17)
. . . rArea,
The obvious mequahtyfAr%FAK < [Imax{0, K¢}l parz.q) < (L/DNKgll 172,
yields
1 ||Kg||L1(T2,g)

¢ (Area, — A) <

A8t — 2Kl pir2,
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After integration we have

o Area, — Ay | Kgll L1cr2 )
p(Area; — A) —p(A4) < |09< = > : .
* + A ) Br—2IKlgey

The right hand side convergesiofor A — 0. Thus we have to improve our estimates
for small A. The integral in(16) also has the following bound:

A
/ (A — a)k(Area, — a) da
0

i 1/q i 1/p
< (/ (A —a)? da) : (/ lic(Area, — a)|” da)
0 0

Aa+1\ Y
= : ||Kg||Lp(TZ,g), (18)

g+1
where we wrotey := p/(p — 1) in order to simplify the notation.
We obtain a second lower bound on the length
(IengthdG- (v), 8))* > 47 A — cAY VDY K|y 2, (19)
foranyc > 2/{/q + 1, e.g.c = 2. Note that our assumptidiKell ;172 o) < 47 does
not imply that the right hand side of the above inequality is always positive. Although

(19) is better for smalld, it is not strong enough to control the length for larger
However, for

A 4 1
A<|————] .,
c- ||Kg||Lp(T2,g)

we use(19)and
Area, -
/ k= A Kl g,
Area;,—A
to obtain the estimate
A_l/p”Kg”Lp(TZ,g)

, N
¢'(Areg; — A) < = .
4 — CAl/q”Kg”Lp(TZ’g)

With the substitution
w = w(A) = 47 — c(Area, — A)Y| Kyl Lo(r2.q)-
integration yields
Area, w(Areag) , 1 w(Area,)
p(Areay) — p(Ay) = / ¢'(A)dA < / 2 qu = L10g2—r>%)
As w(Ag) CW c w(Ag)
q 4

= = |Og 1
¢ TAm—c(Areg — Ap)V| Kl oz, g
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for any Ay between Areg— (4r/(c - I KgllLr(r2,)))? and Areg. We choose
Kolly172 1
A#::max Areag_ M 7A+ .
2||Kg||Lp(T2,g)

Finally we obtain the estimates

8
maxu — g(As) < 1 Iog—n , (20)
c 87 — cl K, LP(T2,g)
1 Kellp 172 q) ZAreagL/q”Kg“LP(Tz,g)
P(Ay) —vs < q lo - @)
87 — 2| Kl 11724 1Kl 1(72,0)

For ¢ = 2 the right hand sides of these inequalities contribute two summands to the
formula forS.

(iii) If v=@(A) is aregular value af betweerv_ andv., thendG - (v) contains at least
two components that are non-contractiblgm Hence, for any metrig on 72 we get

length(3G - (v), &) > 2sys (T2, ).

In order to prove (a) ofTheorem 6.1we apply this equation tg = go. Using

Nk < (1/2)11Kgll L1(72,¢) and lengthidG < (v), g) = e’ lengthdG < (v), go) we
obtain
Area,
Sy < e _da € Loaun WKeliazy 22)
- 4sys(T?, go)* ~ 8 sysi(T2, go)?

Integration yields

A+ 1 [[Kgllp1cr2 Ay
U+—v_:/ go/(A)dAS_%/ e*z(ﬂ(A)dA
A 8sys (T4, g0)* Ja_

K
< 1 || g”Ll(TZ,g)

- reay, 23
= 85y5.(77 g0)2 & (23)

where we used Area= ared T2, go) = f(freaﬁ e=20(A) gA.

Together with inequalitie€l5), (20) and (21)ve obtain the statement of the theorem.

Proof of Lemma6.3. Assume thatX1, X») satisfies (iii), ther® X, contains a non-contrac-
tible loop. By a small perturbation we can achieve that this loop lies completetyj.in
Thereforer1(X1) — 71(T?) is not trivial. Hence(X1, X») does not satisfy (i). Similarly
we prove that it does not satisfy (ii).
Now assume thatXi, X») satisfies both (i) and (ii). Van-Kampen’s theorem implies
71(T?) = 0. Therefore we have shown that at most one of the three conditions is satisfied.
It remains to show that at least one condition is satisfied. For this we assume that neither
(i) nor (ii) is satisfied, i.e. there are continuous pathss! — X, that are non-contractible
within 72. ObviouslydX1 is homologous to zero. We will show that at least one compo-
nent ofdX; is non-homologous to zero. Then there has to be a second component that is
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non-homologous to zero, becausf] = 0 is the sum of the homology classes of the
components.

We argue by contradiction. Assume that each componeiX 9is homologous to zero.
Letr : R? — T2 be the universal covering. Therm(9X1) is diffeomorphic to a disjoint
union of countably mang?. We write

ntoxy = (v
ieN

with ¥; = S1. We choose lifts; : R — R2 of ¢;, i.e. 7(Gi(t + z)) = ¢;(r) forall ¢ €
[0,1],z € Z andi = 1, 2. Then we take a path: [0, 1] — R? joining ¢1(0) to &(0). We

can assume thatis transversal to any;. We definel to be the set of all € N such that

Y; meets the trace gf. The setl is finite. Using the theorem of Jordan and Schoenfliess
about simple closed curvest? we can inductively construct a compact &et- R? with
boundaryU;<;Y;. The number of intersections §fwith U;¢;Y; is odd. Thus, eithef1(0)
orc2(0) is in the interior ofK. But if ¢;(0) is in the interior ofK, then the whole tracg (R)

is contained ink. Furthermoreg; (R) = 7~ 1(¢;([0, 1])) is closed and therefore compact.
This implies that; is homologous to zero in contradiction to our assumption. O

Acknowledgements

The author wants to thank Christian Bar for many interesting and stimulating discussions
about the subject.

References

[1] B. Ammann, C. Bér, Dirac eigenvalue estimates on surfaces, Math. Z. 240 (2002) 423-449
[2] B. Ammann, Spectral estimates on 2-tdnitp://arxiv.org/abs/math.dg/0101061
[3] B. Ammann, Spin-Strukturen und das Spektrum des Dirac-Operators, Ph.D. Thesis, University of Freiburg,
Germany, 1998, Shaker-Verlag, Aachen, 1998. ISBN 3-8265-4282-7.
[4] C. Béar, Extrinsic bounds for eigenvalues of the Dirac operator, Ann. Glob. Anal. Geom. 16 (1998) 573-596.
[5] H. Baum, Spin-Strukturen und Dirac-Operatoren uber pseudoriemannschen Mannigfaltigkeiten, Teubner
Verlag, 1981.
[6] T. Friedrich, Der erste Eigenwert des Dirac-Operators einer kompakten Riemannschen Mannig-faltigkeit
nicht-negativer Krimmung, Math. Nach. 97 (1980) 117-146.
[7] T. Friedrich, Zur Abhéangigkeit des Dirac-Operators von der Spin-Struktur, Collog. Math. 48 (1984) 57-62.
[8] M. Gromov, Structures métriques pour les variétés Riemanniennes, CEDIC, Paris, 1981.
[9] O. Hijazi, A conformal lower bound for the smallest eigenvalue of the Dirac operator and killing spinors,
Commun. Math. Phys. 104 (1986) 151-162.
[10] N. Hitchin, Harmonic spinors, Adv. Math. 14 (1974) 1-55.
[11] K.-D. Kirchberg, An estimation for the first eigenvalue of the Dirac operator on closed Kéhler manifolds of
positive scalar curvature, Ann. Glob. Anal. Geom. 4 (1986) 291-325.
[12] K.-D. Kirchberg, Compact six-dimensional Kéhler spin manifolds of positive scalar curvature with the
smallest possible first eigenvalue of the Dirac operator, Math. Ann. 282 (1988) 157-176.
[13] W. Kramer, U. Semmelmann, G. Weingart, Eigenvalue estimates for the Dirac operator on quater-nionic
Kahler manifolds, Math. Z. 230 (1999) 727—751.
[14] J.L. Kazdan, F.W. Warner, Curvature functions for compact 2-manifolds, Ann. Math. 99 (1974) 14-47.
[15] P. Topping, Mean curvature flow and geometric inequalities, J. Reine Angew. Math. 503 (1998) 47-61.
[16] P. Topping, The isoperimetric inequality on a surface, Manuscripta Math. 100 (1999) 23-33.


http://arxiv.org/abs/math.dg/0101061

	Dirac eigenvalue estimates on two-tori
	Introduction
	Main results
	Comparing spectra of conformal manifolds
	Loewner's inequality
	Spectra of flat two-tori
	Controlling the conformal scaling function
	Acknowledgements
	References


