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Abstract

We prove a lower bound for the eigenvalues of the Dirac operator on two-dimensional tori
equipped with a non-trivial spin structure.
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1. Introduction

Friedrich[6] proved, that if the scalar curvature of a compact spin manifold is bounded
from below by a positive constants0, then any eigenvalueλ of the Dirac operator satisfies

λ2 ≥ n

4(n− 1)
s0.

This inequality was improved in case of restricted holonomy, e.g.[11–13]. Another lower
estimate for Dirac eigenvalues was proven by Hijazi[9]: the square of any eigenvalue of the
Dirac operator is bounded below by the first eigenvalue of the Yamabe operator (conformal
Laplacian).

However, for the two-dimensional torus, all these lower bounds are trivial. The two-
dimensional torus carries four different spin structures. In general, the spectrum of the
Dirac operator will depend on the choice of spin structure. For one of the spin structures,
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the so-calledtrivial spin structure, zero is in the spectrum, for the other spin structures, it
is not.

In the present article we will derive an estimate depending on the spin structure, in order
to control the size of the gap in the spectrum around zero.

Let us fix a Riemannian metric and a non-trivial spin structure onT 2.
Thesystoleis defined to be the shortest length of a non-contractible loop. Similarly, the

spin-systolespin-sys1 is the shortest length of a closed curve along which the spin structure
is non-trivial.

We will show (Corollary 2.3) that any eigenvalueλ of the Dirac operator on the torus
satisfies

λ2 ≥ C π2

spin-sys21
,

whereC > 0 is an explicitly given expression in the area, the systole and theLp-norm of
the Gaussian curvature,p ∈ (1,∞).

The estimate of this paper is an extension of results in[3]. This estimate was the first
estimate for Dirac eigenvalues that depends on the spin structure and that holds on manifolds
without any symmetry assumptions.

Another estimate for the Dirac eigenvalues on compact oriented surfaces of arbitrary
genus has been proven in[1]. This bound depends on different data and uses completely
different techniques.

Under suitable curvature conditions the results of the present article yield better estimates
for Dirac eigenvalues than[1]. This type of estimate is useful for applications to the Willmore
functional[2–4].

2. Main results

Fix a Riemannian metricg and a spin structureχ on the two-dimensional torusT 2.
Recall that theL2-norm ofα ∈ H1(T 2,R) is‖α‖2

L2
:= inf

∫ |ω|2gdvolg, where the infimum

runs over all smooth one-formsω representingα. Note that theL2-norm is invariant under
conformal rescaling.

The integer cohomology classesH1(T 2,Z) are viewed as a lattice inH1(T 2,R) ∼= R
2.

We equip

H1(T 2,Z2) ∼= (1/2)H1(T 2,Z)

H1(T 2,Z)

with the quotient norm, i.e. forβ ∈ H1(T 2,Z2) we set

‖β‖L2 := inf‖α‖L2,

whereα ∈ (1/2)H1(T 2,Z) runs over all representatives ofβ.
By identifying the trivial spin structure onT 2 with 0 ∈ H1(T 2,Z2) the set of all spin

structures is identified withH1(T 2,Z2). Hence‖χ‖L2 is a well-defined invariant of the spin
structureχ and of the conformal type.
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Let

σ1(T
2, g) := inf {‖α‖L2|α ∈ H1(T 2,Z2), α 
= 0},

be thecosystole.
For the formulation of our statement the following definition is required.

Definition 2.1. For anyp > 1, letSp be the function given by the expression

Sp(K,K
′,V) := p

p− 1

[
K′

4π
+ 1

2

∣∣∣∣ log

(
1 − K

4π

)∣∣∣∣+ K

8π − 2K
log

(
2K′

K

)]
+ KV

8

for K ∈ (0,4π),K′ ∈ [K,∞) andV ∈ [0,∞). We extend continuously by setting

Sp(0,K
′,V) := p

p− 1

K′

4π
.

In this paper we will prove the following theorem.

Theorem 2.2. Let (T 2, g) be a Riemannian two-torus with a non-trivial spin structureχ.
Assume that‖Kg‖L1(T 2,g) < 4π. Then any eigenvalueλ of D satisfies

λ2area(T 2, g)

≥ 4π2‖χ‖2
L2

exp(2Sp(‖Kg‖L1(T 2,g), ‖Kg‖Lp(T 2,g)area(T 2, g)1−(1/p), σ1(T 2, g)−2))
,

whereSp is the function defined inDefinition 2.1. Equality is attained for the smallest
positive eigenvalue if and only if g is flat.

From this theorem we will derive a corollary estimatingλ2 in terms of the systole sys1
and thespin-systolespin-sys1

sys1(T
2, g) := inf {length(γ) | γ is a non-contractible loop.},

spin-sys1(T
2, g, χ) := inf {length(γ) | γ is a loop withχ([γ]) = −1.}.

Corollary 2.3. Let (T 2, g) be a Riemannian two-torus with a non-trivial spin structureχ.
Assume that‖Kg‖L1(T 2,g) < 4π. Then any eigenvalueλ of D satisfies

λ2spin-sys1(T
2, g, χ)2

≥ π2

exp
(
4Sp

(
‖Kg‖L1(T 2,g), ‖Kg‖Lp(T 2,g)area(T 2, g)1−(1/p), area(T 2,g)

sys1(T 2,g)2

)) .
Equality is attained for the smallest positive eigenvalue if and only if:

(a) g is flat, i.e. (T 2, g) is isometric toR2/Γ for a suitable latticeΓ , and
(b) there are generatorsγ1, γ2 of Γ satisfyingγ1 ⊥ γ2, χ(γ1) = 1 andχ(γ2) = −1.
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Remark. Using similar techniques it is possible to obtain similar upper and lower bounds
for the first and for all higher eigenvalues, both for the trivial and non-trivial spin structures
[2,3].

Proof of the theorem. Because of the uniformization theorem we can writeg asg = e2ug0
with a real-valued functionu and a flat metricg0. This functionu solves the Kazdan–Warner
equation

∆gu = e−2u∆g0u = Kg.
A large part of this paper is devoted to the proof of a Sobolev type inequality, which yields
an upper bound for the oscillation oscu := maxu− minu (Section 6). We obtain

oscu ≤ Sp(‖Kg‖L1(T 2,g), ‖Kg‖Lp(T 2,g)area(T 2, g)1−(1/p), σ1(T
2, g)−2). (1)

This estimate is optimal if and only ifg is flat.
For flat tori the spectrum of the Dirac operator is known: it can be calculated in terms of

the dual lattice corresponding to(T 2, g0) (we recall this inSection 5). As a consequence of
this, any eigenvalueλ0 of the Dirac operator on the flat torus(T 2, g0, χ) satisfies

λ2
0area(T 2, g0) ≥ 4π2‖χ‖2

L2. (2)

Obviously we have

area(T 2, g) ≥ e2minuarea(T 2, g0). (3)

Proposition 3.1now provides the remaining step. There we show that for any Dirac eigen-
valueλ on (T 2, g, χ) there is a Dirac eigenvalueλ0 on (T 2, g0, χ), such that

λ2 ≥ e−2maxuλ2
0. (4)

Combining(1)–(4)we obtain the theorem. �

Proof of the corollary. In Section 4we prove the inequalities

sys1(T
2, g)2

area(T 2, g)
≤ sys1(T

2, g0)
2

area(T 2, g0)
= σ1(T

2, g0)
2 = σ1(T

2, g)2,

e2oscu spin-sys1(T
2, g, χ)2

area(T 2, g)
≥spin-sys1(T

2, g0, χ)
2

area(T 2, g0)
≥ 1

4‖χ‖2
L2(T 2,g0)

= 1

4‖χ‖2
L2(T 2,g)

.

Together with the monotonicity ofSp in the last argument we obtain the corollary. �

3. Comparing spectra of conformal manifolds

In this section we will compare Dirac eigenvalues on spin-conformal manifolds.

Proposition 3.1. Let M be a compact manifold with two conformal metricsg̃ andg = e2ug̃.
Let D andD̃ be the corresponding Dirac operators with respect to the same spin structure.
We denote the eigenvalues ofD2 byλ2

1 ≤ λ2
2 ≤ · · · and the ones of̃D2 by λ̃2

1 ≤ λ̃2
2 ≤ · · · .
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Then

λ2
i min
m∈M

e2u(m) ≤ λ̃2
i ≤ λ2

i max
m∈M

e2u(m), ∀i = 1,2, . . .

Proof. Let n := dimM. We have dvolg = enudvolg̃. There is an isomorphism of vector
bundles[5], [10, Satz 3.14]or [9, 4.3.1]

ΣM → Σ̃M, Ψ �→ Ψ̃ ,

over the identity id:M → M satisfying

D̃(Ψ̃ ) = euD̃Ψ and |Ψ̃ | = e((n−1)/2)u|Ψ |. (5)

Let (Ψi|i = 1,2, . . . ) be an orthonormal basis of the sections ofΣM with Ψi being an
eigenspinor ofD2 to the eigenvalueλ2

i with respect to the flat metric̃g. The vector space
spanned byΨ1, . . . , Ψi will be denoted byUi.

We can bound̃λ2
i by the Rayleigh quotient

λ̃2
i ≤ max

Ψ̃∈Ui−{0}
(D̃Ψ̃ , D̃Ψ̃ )g̃

(Ψ̃ , Ψ̃ )g̃
.

Plugging(5) into this expression we concludeλ̃2
i ≤ λ2

i maxm∈Me2u. The other inequality
can be proven in a completely analogous way. �

4. Loewner’s inequality

Proposition 4.1. Let g be any Riemannian metric onT 2 and letχ be a non-trivial spin
structure. There is a flat metricg0 which is conformal to g:

(a)
sys1(T

2, g)2

area(T 2, g)
≤ sys1(T

2, g0)
2

area(T 2, g0)
(Loewner′s inequality),

(b)
sys1(T

2, g0)
2

area(T 2, g0)
= σ1(T

2, g0)
2 = σ1(T

2, g)2,

(c)
spin-sys1(T

2, g0, χ)
2

area(T 2, g0)
≥ 1

4‖χ‖2
L2(T 2,g0)

= 1

4‖χ‖2
L2(T 2,g)

.

We have equality in the inequalities of(a) if and only if g is flat.
For the characterization of the equality case in(c) we choose a latticeΓ together with an

isometryI : R
2/Γ → (T 2, g0). Then equality in(c) is equivalent to the fact that there are

generatorsγ1, γ2 for the latticeΓ satisfyingγ1 ⊥ γ2, χ(I ◦ γ1) = 1 andχ(I ◦ γ2) = −1.

Proof. We follow [8, 4.1]. Let g = e2ug0. We start with a non-contractible loopc which
is shortest with respect tog0. There is an isometric torus action on(T 2, g0) acting by
translations. Translation byx ∈ T 2 will be denoted byLx. Then∫

T 2,g0

dx lengthg(Lx(c))

= sys1(T
2, g0)

∫
T 2,g0

dx eu(x) ≤ sys1(T
2, g0)area(T 2, g0)

1/2area(T 2, g)1/2.
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Because the left hand side is an upper bound for sys1(T
2, g)area(T 2, g0), inequality (a)

follows.
The discussion of the equality case in (a) is straightforward; (b) and (c) follow directly

from elementary calculations. As already stated previously, theL2-norm is invariant under
conformal changes. �

In Corollary 2.3we also use the following lemma. The proof of it is straightforward.

Lemma 4.2.

e2oscu spin-sys1(T
2, g, χ)2

area(T 2, g)
≥ spin-sys1(T

2, g0, χ)
2

area(T 2, g0)
.

5. Spectra of flat two-tori

In this section we recall the well-known formula for the spectrum of the Dirac operator
on flat two-tori. We restrict to the case thatT 2 carries a non-trivial spin structure.

Definition 5.1. Thespin-conformal moduli spaceMspin is the set of all(x, y) ∈ R
2 satis-

fying

0 ≤ x ≤ 1
2, (x− 1

2)
2 + y2 ≥ 1

4, y > 0. (6)

For any(x, y) ∈ Mspin we obtain a flat two-torus carrying a non-trivial spin structure as
follows:

T 2 = R
2

Γxy
, Γxy = span

{(
1
0

)
,

(
x

y

)}
.

The spin structureχ ∈ H1(T 2,Z2) is characterized by

χ

(
1
0

)
= 1, χ

(
x

y

)
= −1.

Conversely any flat torus with a non-trivial spin structure can be rescaled to a torus obtained
from Mspin. The dual latticeΓ ∗

xy := H1(T 2,Z) = HomZ(Γxy,Z) is generated by the
vectors

e1 :=
(

1

−x
y

)
and e2 :=

 0
1

y

 .
χ =

[
1

2
e2

]
∈ (1/2)Γ

∗
xy

Γ ∗
xy

.
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Proposition 5.2. ([7]). Assume thatT 2 carries a non-trivial spin structure. Then with the
above notations the spectrum of the square of the Dirac operatorD2 onT 2 is given by

4π2‖γ‖2
L2

area
,

where for eachγ ∈ Γ ∗
xy + (e2/2) we obtain an eigenspace of dimension 2.

Proof. Let (ψ1, ψ2) be a basis of parallel sections of the spinor bundle onR
2 and assume

that they are pointwise orthogonal. Then

Ψj,γ := exp(2πi〈γ, x〉) ψj, γ ∈ Γ ∗
xy + 1

2e2

is a spinor field that is invariant under the action ofΓxy. Thus, it defines an eigenspinor
for D2 : ΣT 2 → ΣT 2 with eigenvalue 4π2|γ|2 and the family(Ψj,γ |j = 1,2; γ ∈
Γ ∗

xy + (e2/2)) is a complete system of eigenspinors. �

We want to prove thatΓ ∗
xy + (e2/2) contains no vector that is shorter thane2/2. For this

we need a lemma.

Lemma 5.3. If linearly independent vectorsv1, v2 ∈ R
2 satisfy

0 ≤ 〈v1, v2〉 ≤ |v1|2 ≤ |v2|2,
then for any integers a, b witha 
= 0 andb 
= 0 the following inequality holds

|av1 + bv2| ≥ |v2 − v1|.
If |av1 + bv2| = |v2 − v1|, then|a| = |b| = 1.

Proof. Let |av1 + bv2| ≤ |v2 − v1|. Without loss of generality we can assume thata andb
are relatively prime.

We obtain

a2|v1|2 − 2|ab| · 〈v1, v2〉 + b2|v2|2 ≤ |v1|2 − 2〈v1, v2〉 + |v2|2,
and therefore

(a2 + b2 − 2)|v1|2 ≤ (a2 − 1)|v1|2 + (b2 − 1)|v2|2
≤ 2(|ab| − 1)〈v1, v2〉 ≤ 2(|ab| − 1)|v1|2.

Thus(|a| − |b|)2 ≤ 0 holds, i.e.|a| = |b|, and as we assumed thata andb are relatively
prime we obtain|a| = |b| = 1. Because of|v1 + v2| ≥ |v2 − v1| the lemma holds. �

Corollary 5.4. If (x, y) ∈Mspin, then:

(a) There is no vector inΓ ∗
xy + (e2/2) that is shorter thane2/2.
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(b) The shortest vectors inΓ ∗
xy − {0} have length

min

{
1

y
,

√
x2 + y2

y

}
.

Proof.

(a) Because of relations(6) the vectorsv1 := e1/2 andv2 := (e1 + e2)/2 satisfy the
conditions of the lemma. Any elementγ of Γ ∗

xy + (e2/2) can be written asav1 +
bv2, a, b ∈ Z − {0}. The lemma yields

|γ| ≥ |v2 − v1| = 1
2|e2|.

(b) This time we setv1 = e1 andv2 = e1+e2. As before 0≤ 〈v1, v2〉 ≤ |v1|2 ≤ |v2|2. Any
γ ∈ Γ ∗

xy−{0} is either a multiple ofv1 orv2 (then|γ|2 ≥ |v1|2 = |e1|2 = 1+(x2/y2))
or

|γ| ≥ |v2 − v1| = 1

y
. �

Using area= y we see that the smallest positive eigenvalueλ1 of D satisfies

λ2
1area= π2

y
= 4π2‖χ‖2

L2.

Also note for the cosystole

σ2
1 = min

{
1

y
,
x2 + y2

y

}
.

6. Controlling the conformal scaling function

LetT 2 carry an arbitrary metricg. According to the uniformization theorem we can write
g = e2ug0 with a real functionu : T 2 → R and a flat metricg0. The functionu is unique
up to adding a constant.

The aim of this section is to estimate the quantity oscu := maxu− minu. This estimate
will be a Sobolev type estimate. However, as we are interested in an explicit bound, we will
use elementary methods for the proof.

Theorem 6.1. We assume

‖Kg‖L1(T 2,g) < 4π.

Then for anyp > 1 we obtain a bound for the oscillation of u

oscu ≤ Sp(‖Kg‖L1(T 2,g), ‖Kg‖Lp(T 2,g)(area(T 2, g))1−(1/p), σ1(T
2, g)−2),

whereS is the function defined inDefinition 2.1. Equality is obtained if and only if g is flat.
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Fig. 1. Metrics with‖Kgi‖L1(T 2,gi)
≤ K1 and oscugi → ∞.

Corollary 6.2. LetF be a family of Riemannian metrics conformal to the flat metricg0.
Assume that there are constantsK1 ∈]0,4π[ andKp ∈]0,∞[, p ∈]1,∞[ with

‖Kg‖L1(T 2,g) ≤ K1 and ‖Kg‖Lp(T 2,g)(area(T 2, g))1−(1/p) ≤ Kp for anyg ∈ F.
Then the oscillationoscug of the scaling function corresponding to g is uniformly bounded
onF by

oscug ≤ S(K1,Kp, p,V(T
2, g0)).

Before proving the theorem we will present some examples showing that the theorem
and the corollary no longer hold if we drop one of the assumptions‖Kg‖L1(T 2,g) ≤ K1 <

4π or‖Kg‖Lp(T 2,g)(area(T 2, g))1−(1/p) ≤ Kp.

Example. For anyK1 > 0 there is a sequence (gi) of Riemannian metrics with fixed
conformal type, bounded volume, constant systole, with

‖Kgi‖L1(T 2,gi)
≤ K1 and oscugi → ∞.

In order to construct such a sequence we take a flat torus and replace a ball by a rotationally
symmetric surface which approximates a cone fori→ ∞ (Fig. 1).

Example. For any ε > 0 there is a sequence (gi) of Riemannian metrics with fixed
conformal type, bounded volume, constant systole,−1 ≤ Kgi ≤ 1, ‖Kgi‖L1(T 2,gi)

≤
4π + ε, ‖Kgi‖Lp(T 2,gi)

≤ const and oscugi → ∞. In order to construct such a sequence
we take a ball out of a flat torus and replace it by a hyperbolic part, a cone of small opening
angle, and a cap as indicated inFig. 2. While the injectivity radius of the hyperbolic part
shrinks to zero, the oscillation ofu tends to infinity.

In Fig. 2the dots in the “limit space” indicate the hyperbolic part with injectivity radius
tending to 0 and diameter tending to∞.

Proof of Theorem 6.1. As Morse functions form a dense subset of the space ofC∞-functions
with respect to theC∞-topology, we can assume without loss of generality thatu is a Morse
function. We set Areag := area(T 2, g) and Area0 := area(T 2, g0). We define

G<(v) := {x ∈ T 2 | u(x) < v}, G>(v) := {x ∈ T 2 | u(x) > v},
ϕ : [0,Areag] → R,
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Fig. 2. Metrics withoutK1 < 4π and oscugi → ∞.

A �→ inf {sup
x∈X

u(x)|X ⊂ T 2 open,area(X) ≥ A}, (7)

= sup{ inf
x∈Xc

u(x)|Xc ⊂ T 2 open,area(Xc) ≥ Areag − A}. (8)

The infimum in(7) is actually a minimum and, asu is a Morse function, the only minimum
is attained exactly for̄Xc = G<(ϕ(A)). Similarly the supremum in(8) is attained exactly
in X̄c = G>(ϕ(A)). The functionϕ is strictly increasing and is continuously differentiable
(Fig. 3). The inverse ofϕ is given by

ϕ−1(v) = area(G<(u)).

The differentialϕ′(A) is zero if and only ifϕ(A) is a critical value ofu.
Now letv ∈ [min u,maxu] be a regular value ofu. We obtain

(ϕ−1)′(v) =
∫
∂G<(v),g

1

|du|g ≥ length(∂G<(v), g)2∫
∂G<(v),g

|du|g , (9)

Fig. 3. The functionφ.
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where length(∂G<(v), g) is the length of the boundary of∂G<(v) with respect tog. This
inequality will yield an upper bound forϕ′ which will provide in turn an upper bound for

oscu = ϕ(Areag)− ϕ(0) = ∫ Areag
0 ϕ′. We transform∫

∂G<(v),g

|du|g =
∫
∂G<(v)

∗ du = −
∫
G<(v),g

∆gu = −
∫
G<(v),g

Kg. (10)

The last equation follows from the Kazdan–Warner equation∆gu = Kg [14]. We defineκ
using the Gaussian curvature functionKg : T 2 → R

κ : [0,Areag] → R, κ(A) := inf

{
sup
x∈X

Kg(x)|X ⊂ T 2 open, area(X) ≥ A
}
.

Any open subsetX ⊂ T 2 satisfies∫ area(X,g)

0
κ ≤

∫
X,g

Kg ≤
∫ Areag

Areag−area(X,g)
κ

and forX = T 2 we have equality. Using Gauss–Bonnet theorem we see that
∫ Areag

0 κ = 0.
The right hand side ofEq. (10)now can be estimated as follows:

−
∫
G<(ϕ(A)),g

Kg ≤ −
∫ A

0
κ =

∫ Areag

A

κ. (11)

Putting(9)–(11)together, we obtain

ϕ′(A) ≤
∫ Areag
A κ

length(∂G<(ϕ(A)), g)2
.

Our next goal is to find suitable lower bounds for length(∂G<(ϕ(A)).
Note that for any regular valuev of u, we can apply the following lemma forX1 = G<(v)

andX2 = G>(v). �

Lemma 6.3. Let(X1, X2) be two disjoint open subsets ofT 2 such that they have a common
smooth boundary∂X1 = ∂X2. Then exactly one of the following conditions is satisfied:

(i) The inclusionX1 → T 2 induces the trivial mapπ1(X1)→ π1(T
2).

(ii) The inclusionX2 → T 2 induces the trivial mapπ1(X2)→ π1(T
2).

(iii) The boundary∂X1 has at least two components that are non-contractible inT 2.

Before proving the lemma we continue with the proof of Theorem 6.1.
If condition (i) is satisfied byv, it is obvious that it is also satisfied byv′ ∈ [0, v]. Similarly,

if condition (ii) is satisfied byv, then it is also satisfied byv′ ∈ [v,Areag]

v− := sup{v ∈ [0,Areag]|(i)is satisfied forv},
v+ := inf {v ∈ [0,Areag]|(ii )is satisfied forv}, A± := ϕ−1(v±).

In each of the three cases we derive a different estimate for length(∂G<(v), g) and therefore
we obtain a different bound forϕ′.
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(i) In this caseG<(v) can be lifted to the universal coveringR
2 of T 2. We will also write

g andg0 for the pullbacks ofg andg0 to R
2. The isoperimetric inequality of the flat

space(R2, g0) yields

length(∂G<(v), g0)
2 ≥ 4π area(G<(v), g0).

Using the relations

length(∂G<(v), g) = evlength(∂G<(v), g0), (12)

area(G<(v), g) ≤ e2v area(G<(v), g0), (13)

we obtain

length(∂G<(v), g)
2 ≥ 4π area(G<(v), g). (14)

Together with the Hölder inequality− ∫ A0 κ ≤ ‖Kg‖Lp(T 2,g)A
1−(1/p) we get

ϕ′(A) = 1

(ϕ−1)′(ϕ(A))
≤ − ∫ A0 κ

length(∂G<(ϕ(A)), g)2
≤ 1

4π
‖Kg‖Lp(T 2,g)A

−1/p.

Integration yields

v− − minu= ϕ(ϕ−1(v−))− ϕ(0) ≤ p

p− 1

1

4π
‖Kg‖Lp(T 2,g)(ϕ

−1(v−))1−(1/p)

≤ p

p− 1

1

4π
‖Kg‖Lp(T 2,g)(Areag)

1−(1/p). (15)

(ii) This case is similar to the previous one, but unfortunately because of opposite signs
some estimates do not work as before. For example,(13) and (14)are no longer true
for G<(v) replaced byG>(v). Instead we use Topping’s inequality[15,16]

(length(∂G>(v), g))
2 ≥ 4πÂ− 2

∫ Â

0
(Â− a)κ(Areag − a)da (16)

with Â = area(G>(v), g). Using the estimate∫ Â

0
(Â−a)κ(Areag − a)da ≤ Â

∫ Â

0
max{0, κAreag − a)} da ≤ Â

2
‖Kg‖L1(T 2,g),

we obtain

(length(∂G>(v), g))
2 ≥ (4π − ‖Kg‖L1(T 2,g))Â. (17)

The obvious inequality
∫ Areag

Areag−Â κ ≤ ‖max{0,Kg}‖L1(T 2,g) ≤ (1/2)‖Kg‖L1(T 2,g)

yields

ϕ′(Areag − Â) ≤ 1

Â

‖Kg‖L1(T 2,g)

8π − 2‖Kg‖L1(T 2,g)

.
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After integration we have

ϕ(Areag − Â)− ϕ(A+) ≤ log

(
Areag − A+

Â

) ‖Kg‖L1(T 2,g)

8π − 2‖Kg‖L1(T 2,g)

.

The right hand side converges to∞ for Â→ 0. Thus we have to improve our estimates
for smallÂ. The integral in(16)also has the following bound:∫ Â

0
(Â− a)κ(Areag − a)da

≤
(∫ Â

0
(Â− a)q da

)1/q

·
(∫ Â

0
|κ(Areag − a)|p da

)1/p

=
(
Âq+1

q+ 1

)1/q

· ‖Kg‖Lp(T 2,g), (18)

where we wroteq := p/(p− 1) in order to simplify the notation.
We obtain a second lower bound on the length

(length(∂G>(v), g))
2 ≥ 4πÂ− cÂ1+(1/q)‖Kg‖Lp(T 2,g) (19)

for anyc ≥ 2/ q
√
q+ 1, e.g.c = 2. Note that our assumption‖Kg‖L1(T 2,g) < 4π does

not imply that the right hand side of the above inequality is always positive. Although
(19) is better for smallÂ, it is not strong enough to control the length for largerÂ.
However, for

Â <

(
4π

c · ‖Kg‖Lp(T 2,g)

)q
,

we use(19)and∫ Areag

Areag−Â
κ ≤ Â1/q‖Kg‖Lp(T 2,g),

to obtain the estimate

ϕ′(Areag − Â) ≤ Â−1/p‖Kg‖Lp(T 2,g)

4π − cÂ1/q‖Kg‖Lp(T 2,g)

.

With the substitution

w = w(A) = 4π − c(Areag − A)1/q‖Kg‖Lp(T 2,g),

integration yields

ϕ(Areag)− ϕ(A#)=
∫ Areag

A#

ϕ′(A)dA ≤
∫ w(Areag)

w(A#)

q

c

1

w
dw = q

c
log
w(Areag)

w(A#)

= q

c
log

4π

4π − c(Areag − A#)1/q‖Kg‖Lp(T 2,g)
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for anyA# between Areag − (4π/(c · ‖Kg‖Lp(R2,g)))
q and Areag. We choose

A# := max

{
Areag −

(
‖Kg‖L1(T 2,g)

2‖Kg‖Lp(T 2,g)

)q
, A+

}
.

Finally we obtain the estimates

maxu− ϕ(A#) ≤ q

c
log

8π

8π − c‖Kg‖Lp(T 2,g)

, (20)

ϕ(A#)− v+ ≤ q ‖Kg‖L1(T 2,g)

8π − 2‖Kg‖L1(T 2,g)

log

(
2Area1/q

g ‖Kg‖Lp(T 2,g)

‖Kg‖L1(T 2,g)

)
. (21)

For c = 2 the right hand sides of these inequalities contribute two summands to the
formula forS.

(iii) If v = ϕ(A) is a regular value ofu betweenv− andv+, then∂G<(v) contains at least
two components that are non-contractible inT 2. Hence, for any metric̃g onT 2 we get

length(∂G<(v), g̃) ≥ 2sys1(T
2, g̃).

In order to prove (a) ofTheorem 6.1we apply this equation tõg := g0. Using∫ Areag
A κ ≤ (1/2)‖Kg‖L1(T 2,g) and length(∂G<(v), g) = ev length(∂G<(v), g0) we

obtain

ϕ′(A) ≤ e−2ϕ(A)

∫ Areag
A κ

4sys1(T 2, g0)2
≤ 1

8
e−2ϕ(A) ‖Kg‖L1(T 2,g)

sys1(T 2, g0)2
. (22)

Integration yields

v+ − v− =
∫ A+

A−
ϕ′(A)dA ≤ 1

8

‖Kg‖L1(T 2,g)

sys1(T 2, g0)2

∫ A+

A−
e−2ϕ(A) dA

≤ 1

8

‖Kg‖L1(T 2,g)

sys1(T 2, g0)2
Area0, (23)

where we used Area0 = area(T 2, g0) = ∫ Areag
0 e−2ϕ(A) dA.

Together with inequalities(15), (20) and (21)we obtain the statement of the theorem.

Proof of Lemma 6.3. Assume that(X1, X2) satisfies (iii), then∂X1 contains a non-contrac-
tible loop. By a small perturbation we can achieve that this loop lies completely inX1.
Thereforeπ1(X1) → π1(T

2) is not trivial. Hence(X1, X2) does not satisfy (i). Similarly
we prove that it does not satisfy (ii).

Now assume that(X1, X2) satisfies both (i) and (ii). Van-Kampen’s theorem implies
π1(T

2) = 0. Therefore we have shown that at most one of the three conditions is satisfied.
It remains to show that at least one condition is satisfied. For this we assume that neither

(i) nor (ii) is satisfied, i.e. there are continuous pathsci : S1 → Xi that are non-contractible
within T 2. Obviously∂X1 is homologous to zero. We will show that at least one compo-
nent of∂X1 is non-homologous to zero. Then there has to be a second component that is
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non-homologous to zero, because [∂X1] = 0 is the sum of the homology classes of the
components.

We argue by contradiction. Assume that each component of∂X1 is homologous to zero.
Let π : R

2 → T 2 be the universal covering. Thenπ−1(∂X1) is diffeomorphic to a disjoint
union of countably manyS1. We write

π−1(∂X1) =
·⋃
i∈N
Yi

with Yi ∼= S1. We choose lifts̃ci : R → R
2 of ci, i.e. π(c̃i(t + z)) = ci(t) for all t ∈

[0,1], z ∈ Z andi = 1,2. Then we take a path̃γ : [0,1] → R
2 joining c̃1(0) to c̃2(0). We

can assume that̃γ is transversal to anyYi. We defineI to be the set of alli ∈ N such that
Yi meets the trace of̃γ. The setI is finite. Using the theorem of Jordan and Schoenfliess
about simple closed curves inR2 we can inductively construct a compact setK ⊂ R

2 with
boundary∪i∈IYi. The number of intersections ofγ̃ with ∪i∈IYi is odd. Thus, either̃c1(0)
or c̃2(0) is in the interior ofK. But if c̃i(0) is in the interior ofK, then the whole tracẽci(R)
is contained inK. Furthermore,̃ci(R) = π−1(ci([0,1])) is closed and therefore compact.
This implies thatci is homologous to zero in contradiction to our assumption. �
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